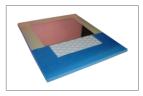


LASTO® – sliding point bearing with PTFE sliding surface



LASTO®FLONPAD

Low-friction, durable, high-quality

mageba

Properties & technical data

Principle

The free-sliding LASTO®FLONPAD point bearing is a high-quality structural support bearing for buildings or civil engineering structures. It is used as a low-height solution for accommodating significant structural movements with minimal friction. It consists of a PTFE-coated elastomeric load-bearing core, and a separate stainless steel sliding sheet with a specially treated, highly polished surface across which it can slide. This high-quality sliding pairing offers excellent sliding properties, durably and reliably. Two types are available: GP6, with an unreinforced core of thickness 6 mm, and GP9, with a steel-reinforced core of thickness 9 mm.

Application areas

LASTO®FLONPAD is an optimal solution in many situations where a durable, low-friction bearing solution is required. The freely definable dimensions of the bearing enable loads to always be transmitted directly and efficiently to the supporting structure.

LASTO®FLONPAD can be used to achieve high-quality bearing support for slabs on walls, columns and brackets and for prestressed slabs. It is particularly suitable for steel construction, timber construction, pipelines, machines, reservoirs and water tanks. Within the 1000×2000 mm maximum dimensions of the sliding plate, any shape is possible.

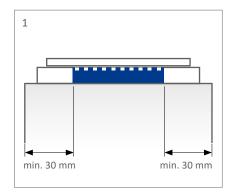
Movement capacity

The standard movement capacity of a LASTO®FLONPAD sliding bearing is ±25 mm in both the longitudinal and transverse directions. The sliding plate is then 60 mm longer and wider than the elastomer/PTFE part of the bearing; the length of the sliding plate along each axis generally exceeds the length of the elastomer/PTFE part by an amount equal to the sliding capacity in that direction plus 10 mm. The installation dimensions of the fully fabricated bearing can be freely specified within certain limits, but must be at least as big as the sliding plate. To prevent the bearing from becoming displaced from its position on the supporting structure, a minimum pressure of 0.5 N/mm² is required.

Rotation

The bearing's maximum permissible rotation angle, α , can be calculated using the following equations:

- GP 6 (unreinforced): perm. $\alpha = \frac{0.2 \times 3}{a} \times 1,000$
- GP 9 (reinforced): perm. $\alpha = \frac{0.2 \times 5}{a} \times 1,000$


where a is the bearing core length [mm] perpendicular to the rotation axis. Should larger angles of rotation be required, we recommend the use of our LASTO®FLONBLOCK bearing.


- 1 Edge distance from load-bearing core: min. 30 mm
- Sliding plate may be supplied with anchors, on request

Installation

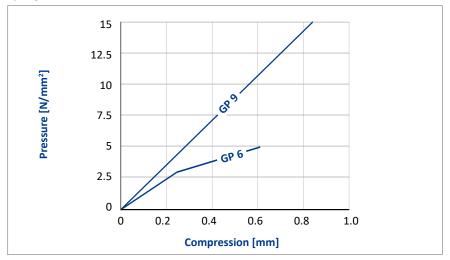
LASTO®FLONPAD sliding point bearings are supplied ready to install, and must not be disassembled. They have to be laid on a smooth, flat and horizontal mortar bed. An additional fixing is not necessary.

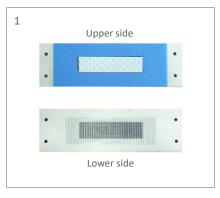
The sliding plate is placed, or cast in place, to leave its sliding surface flush with the surface of the superstructure.

Туре	LASTO®FLONPAD GP 6	LASTO®FLONPAD GP 9	
Illustration			
Description	Unreinforced bearing	Steel-reinforced bearing	
Sliding surface	PTFE, smooth	PTFE, with grease pockets	
Base material	CR	CR	
Elastomer thickness	t = 5 mm	t = 5 mm	
Core thickness	6 mm	9 mm	
Sliding plate thickness	2 mm	2 mm	
Installation height	8 mm	11 mm	
Allowable pressure (SLS)	5 N/mm ²	15 N/mm²	
Weight of load-bearing core	9.61 kg/m²	27.23 kg/m²	
Weight of sliding plate	15.70 kg/m²		

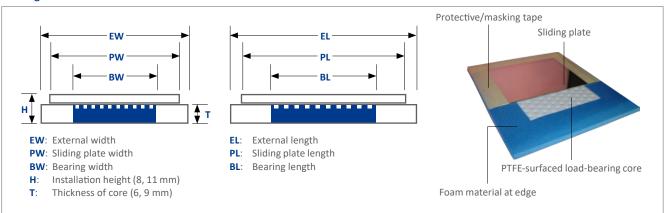
Coefficient of friction

Special designs for larger sliding movements available on request


Pressure [N/mm ²]	5	10	15	Intermediate values may be linearly interpolated
Coefficient of friction	0.05	0.04	0.03	


2 mageba

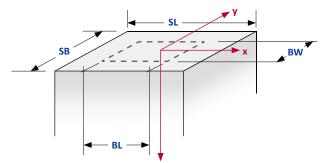
Bearing construction and design example


Spring characteristic

Bearings can be designed to prevent horizontal displacements, on request

Bearing construction

Design example


Specified:

Load: F = 320 kNMovement capacity: $s = \pm 20 \text{ mm}$

Rotation: $\alpha = 1.5 \%$ over **BW** about axis x

Support structure

dimensions: $SW \times SL = 200 \times 300 \text{ mm}$

Solution:

1. Determine size of load-bearing core

BW × **BL** core dimensions as depicted should be appropriate for the support structure dimensions.

 \rightarrow Selected: BW = 110 mm, BL = 210 mm

 $(p = \frac{320000}{110 \times 210} = 13.9 < 15 \text{ N/mm}^2 \text{ max. perm.})$

→ Type GP 9 required

2. Check angle of rotation:

 \rightarrow perm. $\alpha = \frac{0.2 \times 5}{110} \times 1'000 = 9 \% > 1.5 \%$ as specified

3. Dimensions of sliding plate:

PW = 110 mm + 2 x 20 mm + 10 mm = 160 mm **PL** = 210 mm + 2 x 20 mm + 10 mm = 260 mm (10 mm extra as reserve)

4. Installation dimensions:

Support structure dimensions = $200 \times 300 \text{ mm}$ \rightarrow Installation dimensions = $200 \times 300 \text{ mm}$ (SW x SL)

mageba 3

Specification text

Sample specification texts

Supply and install an installation-ready, free-sliding PTFE-sliding point bearing with a stainless steel sliding plate of thickness 2 mm.

Type: LASTO®FLONPAD GP 6

Movement capacity: ±25 mm Allowable pressure (G_L): 5 N/mm² Max. load: 150 kN Installation height: 8 mm

Load-bearing core (BW × BL): 150 × 200 mm Sliding plate (PW × PL): 210 × 260 mm Inst. dimensions (EW × EL): 230 × 280 mm

Supplier:

mageba sa Solistrasse 68 CH-8180 Bulach Tel.: +41-44-872 41 52

Email: buildings.ch@mageba-group.com

www.mageba-group.com

Supply and install a steel-reinforced, installation-ready, free-sliding PTFE-sliding point bearing with a stainless steel sliding plate of thickness 2 mm.

Type: LASTO®FLONPAD GP 9

Movement capacity: ±25 mm Allowable pressure (G_L): 15 N/mm² Max. load: 450 kN Installation height: 11 mm

Load-bearing core (BW × BL): 150 × 200 mm Sliding plate (PW × PL): 210 × 260 mm Inst. dimensions (EW × EL): 230 × 280 mm

Supplier:

mageba sa Solistrasse 68 CH-8180 Bulach Tel.: +41-44-872 41 52

Email: buildings.ch@mageba-group.com

www.mageba-group.com

Reference projects

Stuttgart City Library, DE

Convention Center, HK

Shopping mall Glatt, CH

Airport Hurghada, EG

Stade de Suisse, CH

Product groups (building construction)

Vibration isolation

engineering connections®