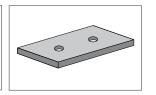



# LASTO® – Elastomeric bearings




# **LASTO®BLOCK T**

High-strength thermal isolation bearings







mageba



# Application areas and important aspects

### **Application areas**

LASTO®BLOCK T is a thermal isolation bearing of unreinforced high-strength elastomer, which can be used to transmit high pressure forces with little deformation while also resisting heat loss. Due to the use of high-quality elastomer compounds, LASTO®BLOCK T is very durable, requires no maintenance and can be used as a thermal isolator in endplate connections, beneath steel columns, beneath precast concrete elements or in wooden structures.

## Permissible load depends on shape ....

As a result of the vertical pressure acting on the bearing, its sides bulge outwards (shear strain in the bearing). The extent to which this occurs depends on the ratio between the bearing's side lengths and its thickness. The higher this ratio (the higher the shape factor S), the stiffer the bearing's behaviour (see Figure 1). Depending on the friction between the bearing and the supporting surface, the bearing may also expand transversely (see Figure 1), so perimeter clearance should be checked.

## ... and supporting surface

The load bearing capacity of an elastomeric bearing is strongly dependent on the surfaces of the connecting structures. Against polished steel surfaces, the bearing displays lower stiffness and therefore

## **Application**

Thermal isolation while subjected to high pressures

#### Permissible pressure

• 52 N/mm<sup>2</sup> (at Serviceability Limit State)

#### **Bearing shapes**

· Any shape possible

#### **Bearing type**

Elastomeric bearing, unreinforced

### **Material properties**

Material:

NBR (nitrile rubber) Hardness: 90 ± 5 IRHD (M) Coefficient of thermal conductivity: 0.20 W/mK

Temperature range: -20 bis + 65°C

lower load bearing capacity than against concrete. The design graphs thus show to remain conservative - the permissible loads when placed against surfaces of polished steel.

## Behaviour under permanent loads

Under the action of long-term loading, elastomers deform even without increasing loads. This so-called creep deformation continues for well over 100 days. This effect is already considered in the design diagrams.

# 1 40 30 Pressure σ [N/mm<sup>2</sup>] 20 mm 20 10 50 x 50 mm 100 x 100 mm 150 x 150 mm Deformation v [mm]

Deformation-Pressure graph from testing with various side lengths and thicknesses against polished steel plates (shortterm loading without consideration of creep)

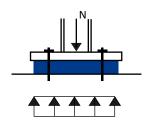
### Contents

| Application areas and important       |
|---------------------------------------|
| considerations2                       |
| Selection of design case3             |
| Definitions4                          |
| Bearing design procedure5             |
| Designtables7                         |
| Example: Endplate connection9         |
| Product range and installation advice |
| auvice11                              |
| Text for tender documentation12       |

## **Cover picture:**

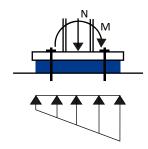
Product: LASTO®BLOCK T

Elastomeric bearing



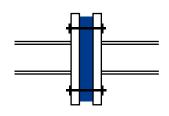

# Selection of Design Case

## **Design Cases**

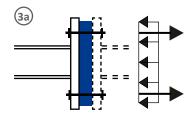

# Design Case ①

- Bearing for structural element
- Column footing




# Design Case 2

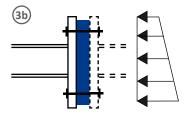
• Column with eccentric normal force / rotation



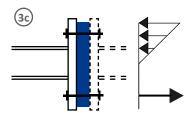

# Design Case (3)

- Endplate connection
- Clamped column




Various stress distributions are possible. See below for further sub-division of Design Case (3).




The pre-stress in the bolts is not cancelled out by normal force and moment.

The pressure arises from the pre-stress in the bolts.

ightarrow Design according to Design Case 1



→ Design according to Design Case 2

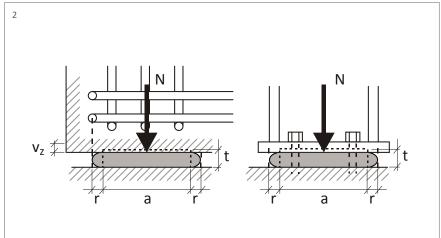


The pre-stress in all bolts is exceeded by normal force and moment.

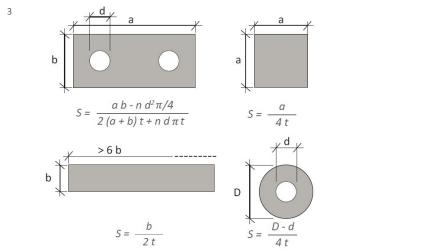
The pressure arises from normal force and moment only.

The pre-stress in the bolts at one side is exceeded by normal force and moment.

The pressure arises from normal force, moment and bolt pre-stress.


→ Design according to Design Case 3




# **Definitions**

### **Explanation of variables**

- a Length of elastomeric bearing (placed horizontally)
- b Width of elastomeric bearing (in endplate connection)
- h Height of elastomeric bearing (in endplate connection
- t Thickness of elastomeric bearing
- e Abstand der Schrauben
- r Outward bulging of bearing
- S Shape factor of the bearing
- $S_{\rm and}$  Reduced shape factor (partial area)
- N Normal force
- M Moment
- F<sub>v</sub> Pre-stress of a bolt (relax = reduced due to creep)
- $\sigma_{_{\!\text{o/u}}}$  Stress at upper / lower edge
- $\overline{\sigma}$  Average stress of the partial area being designed
- $\sigma_{v}$  Stress due to bolt pre-stress
- $\epsilon_{_{\text{o/u}}}$  Compression strains due to pressure
- ε<sub>v,0</sub> Compression strains due to pre-stressing
- $\overline{v}_{o/u}$  Average deformation of upper / lower partial area being designed
- v<sub>z</sub> Deformation of the bearing at its central axis
- $\alpha \hspace{0.5cm} \mbox{Rotation of the endplate connection}$
- F<sub>s,o/s,u</sub> Normal forces in the bolts in the up per / lower areas due to N, M and F<sub>u</sub>



 $r = 0.5\ t + 0.05\ a$ , must lie within the reinforced area of the connecting structure or the area of the endplate



The area of bolt holes with bolts that have little clearance or with no bolts at all, which together account for less than 20% of the total area in the case of rectangular bearings or 10% in the case of round bearings, can be ignored

- Schematic representation of bearing deformation; outward bulging
- 3 Shape factor S, depending on plan area and thickness t



# Approaches to bearing design

### **Design Case 1**

#### Approach I

- 1 Assume bearing thickness t and permissible deformation  $v_{_{_{2,max}}}$
- 2 Calculate side lengths from Graphs 8 to 11 (depending on bearing thickness and vertical load)

#### Approach II

- 1 Assume side lengths a and b, bearing thickness t and permissible deformation V<sub>z,max</sub>
- 2 Calculate the shape factor S (see Figure3) and the pressure

$$\sigma_z = \frac{N}{a \cdot b} \tag{1}$$

3 Determine the compression strain &z (from Graph 12) for the selected bearing shape, depending on pressure and shape factor

$$v_{y} = t \cdot \mathcal{E}_{y}$$
 [2]

4 Check if  $v_{z,max} < v_z$ 

## Approach III

- 1 Assume side lengths a and b, and bearing thickness t
- 2 Calculate pressure according to [1]
- 3 Determine the permissible pressure  $\sigma_{_{zul}}$  with side lengths a and b and thickness t, using Table 1 on page 7
- 4 Check if  $\sigma_z < \sigma_{zul}$

## **Design Case 2**


- 1 Assume side lengths a and b, and bearing thickness t
- 2 Calculate the stresses  $\sigma_{_{o,u}}$  from normal force and moment

$$\sigma_{o,u} = \frac{N}{a \cdot b} \pm \frac{6 \cdot M}{b \cdot a^2}$$
 [3]

- 3 If the surface stresses  $\sigma_{o}$  and  $\sigma_{u}$  do not deviate from each other by more than 10%, the design can be done in accordance with Design Case 1
- 4 Calculate the average pressure  $\bar{\sigma}_{_{\!0}}$  and  $\bar{\sigma}_{_{\!0}}$  in the outer thirds (see Figure 4)

$$\overline{\sigma}_o = \sigma_o - \frac{1}{6} (\sigma_o - \sigma_u) \le 52 \text{ N/mm}^2$$
 [4]

$$\overline{\sigma}_u = \sigma_o - \frac{5}{6} (\sigma_o - \sigma_u) \le 52 \text{ N/mm}^2$$
 [5]



5 Determine reduced shape factor S<sub>red</sub> for the upper and lower, or right and left stress areas

$$S_{red} = \frac{b \cdot h}{6 \cdot (b + \frac{h}{3})} \cdot t \text{ resp. } \frac{a \cdot b}{6 \cdot (b + \frac{a}{3})} \cdot t$$
[6]

- 6 Determine the average compression strain  $\bar{E}_{_{0}}$  and  $\bar{E}_{_{u}}$  in the stress areas from the average stresses  $\bar{\sigma}_{_{0}}$  and  $\bar{\sigma}_{_{u}}$  and the shape factor S $_{_{red}}$  in accordance with Graph 12
- 7 Check if  $\bar{\xi}_{o,u} \le \xi_{zul} = 30\%$
- 8 Optionally, the average vertical deformation  $v_z$  and the rotation  $\alpha_a$  can now be determined with the help of Steps 9 and 10
- 9 Determine average vertical deformation using

$$\bar{v}_o = \bar{\varepsilon}_o \cdot t$$
 $\bar{v} = \bar{\varepsilon} \cdot t$ 

$$v_z = \frac{\bar{v}_o + \bar{v}_u}{2}$$
 [8]

[7]

10 Determine rotation  $\alpha_a$  using

$$\alpha = 3 \cdot \frac{(\bar{v}_o - \bar{v_u})}{2 \cdot a}$$
 [10]

#### **Design Case 3**

Due to the relaxation of the elastomer (creep strain  $\varphi$  = 18 %), some of the prestressing force of the bolts is lost. This must be considered in the design. The prestressing forces and bolts must be arranged symmetrically.

- 1 Assume bearing thickness t, side lengths b and h, bolt spacing e and prestressing force F, for each bolt
- 2 Calculate the stress immediately after pre-stressing with force F<sub>v</sub> in n bolts:

$$\sigma_{V,0} = \frac{n \cdot F_{v}}{h \cdot h} \tag{11}$$

Note: All bolts are to be retightened after 10 minutes to compensate for the loss of pre-stress from short-term creep.

3 Calculate the shape factor for the whole bearing surface:

$$S = \frac{a \cdot b}{2 \cdot (a + b) t}$$
 [12]

- 4 Determine the compression strain  $\mathcal{E}_{v}$  of the bearing due to pre-stress with the help of Graph 12
- 5 Determine the elastic part of the compression strain  $\mathcal{E}_{v,o}$ , considering creep:

$$\varepsilon_{V,0} = \frac{\varepsilon_{V}'}{1+\varphi} = \frac{\varepsilon_{V}'}{1.18}$$
 [13]

- 6 Determine the relaxation-reduced pressure from pre-stress,  $\sigma_{_{v,relax}}$  for compression strain  $\epsilon_{_{v,o}}$  using Graph 12
- 7 Calculate the reduced pre-stressing force  $F_{v,relax}$ :

$$F_{v,relax} = \frac{1}{n} \cdot \sigma_{v,relax} a \cdot b$$
 [14]

# Circumstance 1: Pre-stress is not lost (not cancelled out by other effects)

8 Calculate bolt forces F<sub>s,o</sub> (upper) and F<sub>s,u</sub> (lower), to establish whether or not the pre-stress is cancelled out:

$$F_{s,o} = \frac{-N}{n} - \frac{2 \cdot M}{n \, e} + F_{v,relax}$$
 [15]

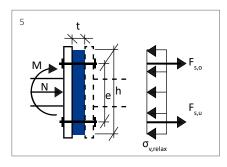
$$F_{s,u} = \frac{-N}{n} + \frac{2 \cdot M}{n e} + F_{v,relax}$$
 [16]

(continued on next page)



# Approaches to bearing design

### **Design Case 3 (continued)**


9 If F<sub>s,o</sub> > 0 and F<sub>s,u</sub> > 0, then the pre-stress is not cancelled out.

Rotation  $\alpha = 0$ 

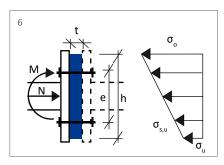
Deformation  $v_v = \mathcal{E}_v' \cdot t$ 

Bearing pressure  $\sigma_0 = \sigma_{\mu} = \sigma_{\nu,relax}$ 

See Figure 5



# Circumstance 2: Pre-stress is lost on both sides (cancelled out by other effects on both sides)


10 Calculate the stresses should the bolts be removed:

$$\sigma_o = \frac{N}{b \cdot h} + \frac{6 \cdot M}{b \cdot h^2}$$
 [17]

$$\sigma_u = \frac{N}{b \cdot h} - \frac{6 \cdot M}{b \cdot h^2} \tag{18}$$

$$\sigma_{s,u} = \sigma_o + \frac{\sigma_u - \sigma_o}{a} \frac{a + e}{2}$$
 [19]

11 If  $\sigma_{s,u} < \sigma_{v,relax}$  then the pre-stress in all bolts is cancelled out. The design is to be done in accordance with Design Case 2. Otherwise, proceed to Circumstance 3:



# Circumstance 3: Pre-stress is lost on upper side (cancelled out by other effects)

If the pre-stress in the bolts is only cancelled out at one side, the design is to be done as follows:

Calculate the stresses and the bolt forces should the upper bolts be removed (positive bending moment = tension at lower side):

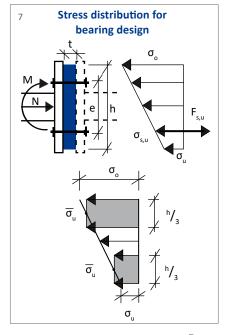
$$\sigma_o = \frac{N + \frac{2 \cdot M}{e}}{b \frac{a + e}{4} \left(1 + \frac{2a - e}{3 \cdot e}\right)}$$
 [20]

$$\sigma_u = \sigma_o - \frac{2 \cdot a}{a + e} \left( \sigma_o - \sigma_{v,relax} \right)$$
 [21]

$$F_{s,u} = \frac{2}{n} \left( -N + b \, \alpha \frac{\sigma_o + \sigma_u}{2} \right)$$
 [22]

Check stresses using equations [6] and [7]

The provided formulae for Circumstance 3 represent a simplification of the equations. The stresses at the upper bearing edge are slightly overestimated. At relatively low bending moments the bolt forces are overestimated by up to about 25 %.


### Design of the bearing

The bearing is designed using the above calculated stresses  $\sigma_o$  und  $\sigma_u$ . In the case of uneven pressure due to the effect of moment, the bearing part with greater pressure is used for the design.

12 If the ratio  $\sigma_o/\sigma_u < 1.1$ , then the pressure distribution should be considered even. Determine compression strain  $\epsilon_u = \epsilon_o$  with stress  $\sigma_o$  using Graph 12

If the compression strain  $\rm E_{o}$  > 30%, the bearing is overloaded.

13 If the pressure distribution is uneven, with  $\sigma_o/\sigma_u > 1.1$ , then only 1/3 of the bearing at each side must be considered in the design.



14 The relevant compression strains  $\bar{E}_{_{0}}$  and  $\bar{\epsilon}_{_{u}}$  are determined from  $\bar{\sigma}_{_{u}}$  and  $\bar{\sigma}_{_{u}}$  using Graph 12, with the shape factor S<sub>red</sub> calculated according to [8].

If the compression strain  $\bar{\epsilon}_{_{0}}$  > 30%, then the bearing is overloaded.

- 15 The relevant deformations of the partial areas are calculated using [7] and [8]:
- 16 The rotation  $\alpha$  of the connecting surface, in the case of bearings for which the pre-stress of all bolts is cancelled out, is calculated using [10].

In the case of bearings for which the pre-stress of the bolts is only cancelled out at one side, the rotation is calculated using:

$$\alpha = \frac{6(\bar{v}_o - \varepsilon_{v,o} \cdot t)}{2h + 3e}$$
 [23]

Attention: If, in addition to bending moment and normal force, a transverse force must also be transmitted by the bolts, then the bolts can be designed using the following interaction formula.

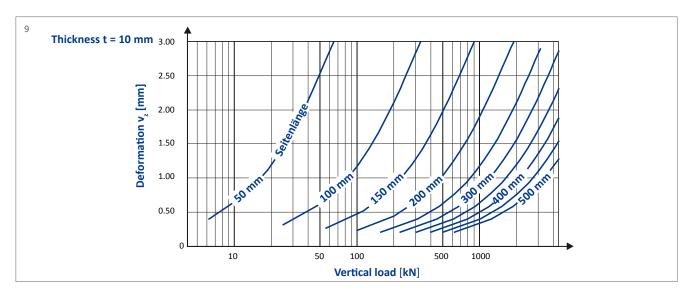
$$\left[\frac{N_d}{N_{R,d}}\right]^2 + \left[\frac{V_{a,d}}{V_{a,R,d}}\right]^2 + \frac{M}{M_{R,d}} \le 1$$
 [24]

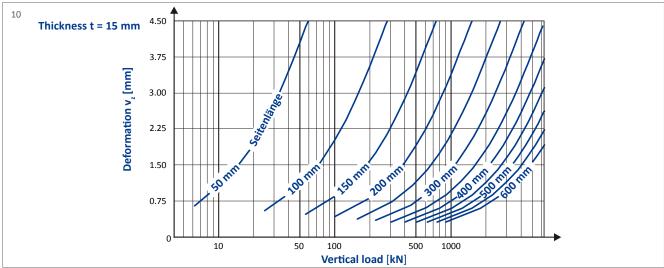


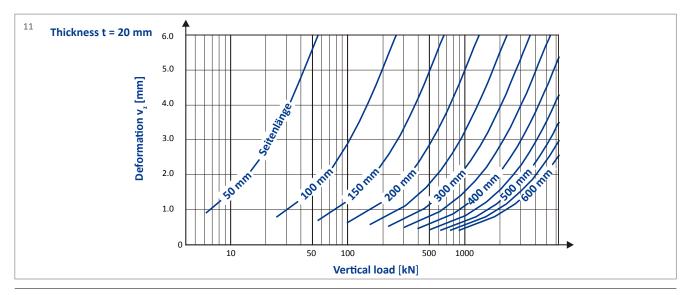
# Design tables

Table 1: Maximum permissible pressure in N/mm<sup>2</sup>, depending on side lengths a, b and thickness t

| Thicknesses   |     |     |     | Side length a [mm] |    |     |     |     |     |     |     |     |     |     |     |     |     |     |      |
|---------------|-----|-----|-----|--------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| [mm]          |     |     |     | 5                  | 20 | 25  | 30  | 40  | 50  | 60  | 70  | 80  | 90  | 100 | 120 | 140 | 165 | 200 | 250  |
|               |     |     |     | 10                 | 40 | 50  | 60  | 80  | 100 | 120 | 140 | 160 | 180 | 200 | 240 | 280 | 330 | 400 | 500  |
|               |     |     |     | 15                 | 60 | 75  | 90  | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 360 | 420 | 495 | 600 | 750  |
|               | 5   | 10  | 15  | 20                 | 80 | 100 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 | 480 | 560 | 660 | 800 | 1000 |
|               | 20  | 40  | 60  | 80                 | 24 | 24  | 25  | 26  | 26  | 27  | 27  | 27  | 27  | 28  | 28  | 28  | 28  | 28  | 29   |
|               | 25  | 50  | 75  | 100                | 24 | 25  | 26  | 27  | 28  | 28  | 28  | 29  | 29  | 29  | 30  | 30  | 30  | 31  | 31   |
|               | 30  | 60  | 90  | 120                | 25 | 26  | 27  | 28  | 29  | 29  | 30  | 30  | 31  | 31  | 32  | 32  | 32  | 33  | 33   |
|               | 40  | 80  | 120 | 160                | 26 | 27  | 28  | 29  | 31  | 32  | 32  | 33  | 34  | 34  | 35  | 36  | 36  | 37  | 37   |
|               | 50  | 100 | 150 | 200                | 26 | 28  | 29  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  | 40  | 41   |
|               | 60  | 120 | 180 | 240                | 27 | 28  | 29  | 32  | 33  | 35  | 36  | 37  | 38  | 39  | 40  | 42  | 43  | 44  | 45   |
| Side length b | 70  | 140 | 210 | 280                | 27 | 28  | 30  | 32  | 34  | 36  | 38  | 39  | 40  | 41  | 43  | 44  | 46  | 47  | 49   |
| [mm]          | 80  | 160 | 240 | 320                | 27 | 29  | 30  | 33  | 35  | 37  | 39  | 40  | 42  | 43  | 45  | 46  | 48  | 50  | 52   |
|               | 90  | 180 | 270 | 360                | 27 | 29  | 31  | 34  | 36  | 38  | 40  | 42  | 43  | 45  | 47  | 49  | 51  | 52  | 52   |
|               | 100 | 200 | 300 | 400                | 28 | 29  | 31  | 34  | 37  | 39  | 41  | 43  | 45  | 46  | 48  | 51  | 52  | 52  | 52   |
|               | 120 | 240 | 360 | 480                | 28 | 30  | 32  | 35  | 38  | 40  | 43  | 45  | 47  | 48  | 52  | 52  | 52  | 52  | 52   |
|               | 140 | 280 | 420 | 560                | 28 | 30  | 32  | 36  | 39  | 42  | 44  | 46  | 49  | 51  | 52  | 52  | 52  | 52  | 52   |
|               | 165 | 330 | 495 | 660                | 28 | 30  | 32  | 36  | 40  | 43  | 46  | 48  | 51  | 52  | 52  | 52  | 52  | 52  | 52   |
|               | 200 | 400 | 600 | 800                | 28 | 31  | 33  | 37  | 40  | 44  | 47  | 50  | 52  | 52  | 52  | 52  | 52  | 52  | 52   |
|               | 250 | 500 | 750 | 1000               | 29 | 31  | 33  | 37  | 41  | 45  | 49  | 52  | 52  | 52  | 52  | 52  | 52  | 52  | 52   |


(e.g. bearing 80 x 200 x 10 mm $^3$ :  $\sigma_{zul}$  = 34 N/mm $^2$ )


## Determination of side length of a square bearing on the basis of vertical load and permissible deformation v,






# Design tables









# Example: Endplate connection

#### Challenge:

Forces and moments:

M = 65 kNm

N = 200 kN (Pressure force in beam is

F<sub>v</sub> = 110 kN (Bolt tension force is positive) Dimensions:

b = 160 mm; h = 320 mm; e = 280 mm

= 15 mm

= 6

= 25 mm (>23.5 mm i.e. adequate according to Figure 2)

### **Solution:**

All pressure stresses in the bearing are po-

 $\sigma_{vo} = 12.9 \text{ N/mm}^2$ according to [11]

S = 3.56according to [12]

Compression strain  $\varepsilon_{\nu}$  due to pre-stressing, from Graph 12:

= 0,122

 $\epsilon_{v,o} = 0,103$ according to [13]

 $\sigma_{V,relax} = 10 \text{ N/mm}^2 \text{ from Graph } 12$ 

 $F_{v,relax} = 85.3 \text{ kN}$ according to [14]

 $F_{s,o} = \frac{-200 \text{ kN}}{6} - \frac{2 \cdot 65 \text{ kNm}}{6 \cdot 280 \text{ mm}} + 85.3 \text{ kN} =$ 

-25.4 kN according to [15]

(F<sub>0</sub> < 0, i.e. pre-stressing force can celled out)

 $F_{s,u} = 129.4 \text{ kN}$ 

Bolt is loaded in tension, i.e. Design Case 3 applies

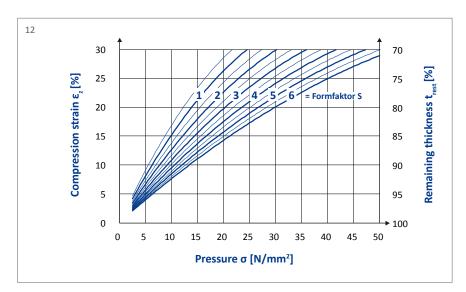
 $\sigma_{0} = 19.4 \text{ N/mm}^{2}$ according to [20]

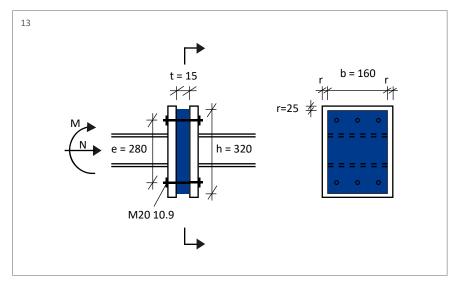
 $= 9.4 \text{ N/mm}^2$ according to [21]

= 178.7 kN (e.g. M20, 10.9)

according to [22]

 $\bar{\sigma}_{0} = 17.7 \text{ N/mm}^2$ according to [4]


 $S_{red} = 2.13$ according to [6]


From Graph 12:

= 0.204 < 30 %, i.e. loading permissible


= 3.06 mm according to [7]

= 0.61 % according to [23]





- Dependence of compression (including creep) on pressure and shape factor
- 13 Drawing of an endplate connection





# Product range and installation guidelines

#### **Product range**

| Types            | Bearing height H<br>[mm] | max. dimensions L x B<br>[mm] | Delivery form                                                           |  |  |  |
|------------------|--------------------------|-------------------------------|-------------------------------------------------------------------------|--|--|--|
| LASTO®BLOCK T 05 | 5                        | 1000 x 1000                   |                                                                         |  |  |  |
| LASTO®BLOCK T 10 | 10                       | 1000 x 1000                   | In sheets or cut to customer<br>requirements, with holes<br>if required |  |  |  |
| LASTO®BLOCK T 15 | 15                       | 1000 x 1000                   |                                                                         |  |  |  |
| LASTO®BLOCK T 20 | 20                       | 1000 x 1000                   |                                                                         |  |  |  |

# Installation guidelines

When placed against concrete or mortar, it must be ensured that the connecting structure has adequate strength and a flat surface without ridges, burrs or large recesses. It must also be ensured that the bearing surfaces are clean and grease-free.



# Tender texts

#### **Tender texts**

Supply and installation of high-capacity, unreinforced thermal isolation bearings

Product: LASTO®BLOCK T

The permissible loading depends on the bearing geometry and is limited to max. 52 N/mm<sup>2</sup>.

Proven remaining bearing thickness under a permanent load of duration 100 days to be min. 60% of nominal thickness.

Maximum allowed rotation capacity  $\alpha = ... \%$ 

Bearing thickness: ..... mm

Dimensions (L x B): ..... mm x ..... mm Including creation of a flat load-bearing surface.

Units: Pieces.

Supplier:

mageba sa Solistrasse 68 8180 Bülach Switzerland

Tel.: +41-44-872 40 50

Email: buildings.ch@mageba-group.com

www.mageba-group.com

# **Project references**













Amiens, FR

Municipal library of Stuttgart, DE Convention Center, HK

Shopping Centre, CH

Hurghada Airport, EG

Stade de Suisse, CH

# **Product groups (building construction)**







**Expansion joints** 





Structural bearings

Vibration isolation

Special products

engineering connections®